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Motivation



Motivation

How do we learn about health?

• Experts

− Inequities in trust (Alsan and Wanamaker, 2018; Banerjee et al,

2023; Lowes and Montero, 2021; Martinez-Bravo and Stegmann,

2021)

− Inequities in access

• Laypeople

− Can improve issues of trust (Alsan and Eichmeyer, 2024)

− Can improve issues of information dissemination (Banerjee et al.,

2019)

− Inequities in information in the network

− Inequities in information sharing

• Experiences
− Large literature about experiential learning in agriculture

• Bound by limited attention (Hanna et al., 2014)

• Internalizing neighbor’s experiences (Foster and Rosenzweig, 1995;

Conley and Udry, 2010)

− Similarities between learning in agriculture and health
• Noisy, uncertain outcomes

• Complex, high dimensional problems

• Subject to exogenous shocks

• High stakes
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Motivation

Experiential learning about health

• Cons

− Difficult to observe outcomes

− Difficult to attribute outcomes to inputs

− Misattribution could bias beliefs

• Pros

− Trustworthy

− Unconstrained by social marginalization

Preview of results:

1. Aiding individuals in experiential learning about health technology

(chlorine tablets) → technology adoption and improved health

2. Experiential learning and social learning are complementary

− Only learn about health technology from others if you have both

sender and receiver have gone through experiential learning

− Can learn from positive signals in the network → moderates

potential for negative draws from nature to lead to misattribution
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Outline

Outline:

1. Brief literature review: learning about health and agriculture

2. Paper 1 (Akram and Mendelsohn, 2021) : Diaries to Increase the

Adoption of Chlorine tablets for Water Purification by Poor

Households
− Can experiential information improve take-up of health technologies

relative to expert information alone?
• Setting: chlorine tablets in peri-urban Karachi, Pakistan

• Recording diarrhea leads to higher rates of chlorine adoption than

standard information about chlorine efficacy from CHW

• Experiential + Expert information > Expert information

3. Paper 2 (Akram et al., in progress): Title Forthcoming
− How does experiential learning about health work?

• Stronger signals versus many signals?

• Habit formation as a confounder?

• Complementarities with social learning?

− Policy 1: (a) get people to adopt, versus (b) direct attention

− Policy 2: (a) saturate treatment, versus (b) seed treatment
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Literature Review



Learning by Doing: Agriculture

Farmers learn through experimentation... (Foster and Rosenzweig, 1995)

• Farmers are more likely to adopt technologies (high-yield varietals in

the Green Revolution in India) if they experiment with them

• Farmers are more likely to adopt technologies if their neighbors use

them and experience high yields

... but attention is bound (Hanna et al., 2014)

• Encouraging experimentation did not lead to changes in behavior

without showing farmers a summary of changes in inputs/outputs

• Information is not useful without noticing
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Learning by Doing: Health

Learning by doing among providers: Volume-outcome relationship

• Meta-analysis: positive and stat. sig. relationship, but magnitudes

vary, and cannot rule out selective referrals (Halm et al., 2002)

• Non-elective C-sections: 1SD ↑ in recent experience ⇒ ↓ 13.8%

NICU admission (Facchini, 2022)

Learning by observing among patients (Bennett et al., 2018)

• Standard hygiene instruction versus showing microbes under a

microscope – seeing is believing

→ improved hygiene (visible check of hands, nails, feet, and clothes)

→ improved health (child anthropometrics)

→ effects moderated by stronger traditional beliefs, which teach that

overconsumption and heat cause diarrhea
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Akram and Mendelsohn (2021)



Setting

Preventive health behaviors: Long-term, persistent use → amenable to

learning by doing

Technology: Chlorine tablets (effective water purification technology)

• 7.1% of Pakistani households use any water purification technology

(Pakistan DHS, 2017-18)

• 34% take-up with free distribution (Dupas et al., 2016)

• Requires daily use

Setting: peri-urban Karachi

• Data from our baseline (Akram et al., forthcoming)

− 21% do nothing to clean drinking water

− 64.5% use (largely ineffective) methods to filter particles

− 14.5% use a method to disinfect (mostly boiling)

− 75% report dirt in drinking water (baseline)

− Enumerator observed dirt in drinking water in 16% (38%) of

households during baseline (any survey)
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Setting
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Setting
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Info-Tool

Hypothesis – Health effects of water purification through chlorine table

are not immediately observable, so:

Making these effects easier to observe

=⇒ learning about efficacy over time through repeated use

=⇒ long-run behavioral change

Test of learning: Short-term drawing attention to health signals ⇒
long-term behavioral change

Treatment – cluster-randomized (neighborhoods):

• Pen-and-paper chart for caregivers to track children’s diarrhea

• Every 2 weeks: Comparison bar chart with expected diarrhea rate

(from epidemiological literature: Luby et al., 2006)

• Comparison: Active Control (chlorine distribution and consultation)
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Info-Tool
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Timeline

Figure 1: Akram and Mendelsohn (2021): Timeline

12



Results

Figure 2: Akram and Mendelsohn (2021): Chlorine Acceptance
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Results

Figure 3: Akram and Mendelsohn (2021): Chlorine Residual Presence
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Results

Figure 4: Akram and Mendelsohn (2021): Child Anthropometrics
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Motivation

Agha Ali Akram (Mathematica)

Gabriella Fleischman (Harvard Kennedy School)

Akib Khan (Uppsala University)

Reshmaan Hussam (Harvard Business School)

Understanding how experiential learning about health works

• What does Info-Tool actually do?

− Create stronger signals → learning → long-term adoption
− Early adoption (novelty, etc.) → more signals → learning →

long-term adoption

• Many signals: less variable information (on average more accurate),

but learning constrained by limited attention

• Stronger signals: may overweight unrepresentative signals

− Early adoption (novelty, etc.) → habit formation → long-term

adoption

− Social learning (neighborhood-clustered randomization)
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Motivation

Agha Ali Akram (Mathematica)

Gabriella Fleischman (Harvard Kennedy School)

Akib Khan (Uppsala University)

Reshmaan Hussam (Harvard Business School)

Understanding how experiential learning about health works

• What does Info-Tool actually do?

− Stronger signals versus early adoption → treatment arm with early
subsidies conditional on use (Incentives arm)

• Within Incentives: Habit formation versus learning → not addressing

− Individual experiential learning versus social learning →
individual-level randomization, spillovers by treated neighbors
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Experimental Design: Incentives Arm

Design borrowed from Hussam et al. (2022)

Short-term incentives ⇒ short-term use

⇒ habit formation or learning through signal aggregation

⇒ long-run behavioral change

Treatment:

• Offer paper tokens for empty chlorine tablet wrappers

• Tokens redeemable for children’s goods (lowest value: stickers, highest

value: backpack)

• Possible to game =⇒

• Main outcome: objective tests for chlorine residual in drinking water

• Conduct unscheduled audits

• Income effect held constant (unconditional lottery for gifts in other

treatment groups)
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Experimental Design: Info-Tool

Design borrowed from Akram and Mendelsohn (2021)

Treatment:

• Pen-and-paper chart for caregivers to track children’s diarrhea

• Every 2 weeks: Comparison bar chart with control diarrhea rate

• One time: 3-month difference-in-difference bar charts after treatment

period ends

• Individual-level randomization → random variation in treatment status of

neighbors

19



Experimental Design: Info-Tool
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Experimental Design: Timeline

Sample: 1800 caregivers in peri-urban Karachi

• At least one child < 5 years old

• Children drink from same water vessel as parents

• Water vessel is large enough for appropriate use of chlorine table
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Model

Naive DeGroot Learning:

Ŝ t
i =

∑J
j=1 α

t
ijs

t
ij

d t
i + 1

Ŝ t
i : individual i ’s net information in time t

sij : information sent to individual i from individual j (my own signal: sii )

αij : weight that individual i gives signal sij
d t
i : individual i ’s degree (number of network connections) in time t

Our model of experiential and social learning:

→ model of complementarities in experiential and social learning

→ simplest version: consider the role of strong signals (assume

away early adoption stories)
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Model

Our model of social and experiential learning:

ŜT
i =

∑T
t=0

∑J
j=1 α

t
ij · atij · stij∑T

t=0

∑J
j=1 a

t
ij

Ŝ t
i : individual i ’s net information in time t

sij : information sent to individual i from individual j (my own signal: sii )

αij : weight that individual i gives signal sij

atij ∈ {0, 1}: i received a signal from j in time t

only consider signals if i receives a signal from j in period t

atii = 1 ⇒ I adopt chlorine in period t

New observations enter each time period
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Model: Defining Signal Weights

Assumption: Signal weights are the believed probability that a signal is

accurate, αt
ij ∈ [0, 1], where:

αt
ij = αt

ij(γ
t
j , ω

t
γj ,i , ·)

ωt
γj ,i = ωt

γj ,i (γ
t−1
i , γt−2

i , ..., γ0
i , ·)

• γt
j : j ’s technology to observe signals in time t

• ωt
γj ,i

: i ’s time t trust in γt
j (j ’s time t signal-observation technology)

− depends on technologies I have used in the past

• Assume other reasons to be skeptical towards a signal from j in time

t are exogenous

− I was distracted in time t → low αt
ii

− I think j exaggerates often → low αt
ij , ∀t
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Model

Adopt chlorine if:

Ŝ t
i > c ti

c ti : cost of using chlorine

→ new decision each period (not forward-thinking, multi-period decision)

→ passive learner, not active experimenter
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Model → Treatments

Chlorine Only, Incentives, and Info-Tool:

• free distribution and delivery of chlorine table in months 4-18

• ↓ c ti , t ∈ (4, 18)

• ↑ chlorine adoption relative to Pure Control

Incentives:

• gifts conditional on chlorine use in months 4-6

• ↓ c ti , t ∈ (4, 6)

• ↑ contemporaneous chlorine adoption relative to Chlorine Only
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Model → Treatments

Info-Tool:

• chart to record children’s diarrhea rates in months 1-6

• ↑ αt
ii , t ∈ (1, 6) via γt

i

• ↑ heterogeneity by early period health signals relative to Chlorine

Only and Incentives

• ↑ chlorine use in t > 6 relative to Incentives and Chlorine

• ↑ αt
ij , j ∈ IT via ωγj ,i

• ↑ heterogeneity by spillovers from IT households relative to Chlorine

Only and Incentives

• ↑ importance of friends’ health signals in explaining spillover effects
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Variable Definitions

Heterogeneity by:

• Health Signals: Predicted health improvement after chlorine

distribution

• Actual health improvement

Diarrheat=1,2,3 − Diarrheat=4,5,6

nchildren × nvisits

• Endogenous to treatment status ⇒ construct lasso-predicted

measures using baseline variables in Pure Control sample

• Improved = predicted health improvement is above median

• Spillovers: Anyone in Info-Tool group lives within 20m

• Recentered to purge estimates of OVB (Boryusak and Hull, 2022)

• 20m selected using BIC-minimizing radius (Eggers et al., 2020)
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Model Predictions: Overall Chlorine Use

✓Higher use in chlorine groups than Pure Control, ∀t
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Model Predictions: Overall Chlorine Use

✓Higher use in chlorine groups than Pure Control, ∀t
✓Higher short-term use in the Incentives group
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Model Predictions: Overall Chlorine Use

✓Higher use in chlorine groups than Pure Control, ∀t
✓Higher short-term use in the Incentives group

✓Higher medium-term use in the Info-Tool group

31



Model Predictions: Overall Chlorine Use

Take-away: Strong signals explains IT increased use one quarter, but

effects fade out
Tables
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Model Predictions: Health Signal Heterogeneity

Suggestive: Info-Tool short-term responsiveness to early health signals
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Model Predictions: Health Signal Heterogeneity

Suggestive: Info-Tool short-term responsiveness to early health signals
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Model Predictions: IT Spillover Heterogeneity

✓Info-Tool responsiveness to IT spillovers
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Model Predictions: IT Spillover Heterogeneity

✓Info-Tool responsiveness to IT spillovers
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Model Predictions: IT Spillover Heterogeneity

✓Info-Tool responsiveness to IT spillovers

✓IT-to-IT spillovers driven by predicted improved neighbors

37



Improved IT with Improved Neighbors

Ideal IT candidate: Early positive health signals + neighbors with early

positive health signals
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Not Improved IT with IT Neighbors

Complementarity between experiential and social learning moderates the

potential for negative draws from nature to lead to misattribution
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What Explains Info-Tool Success?

Info-Tool sends stronger signals

• Explains immediate post-treatment higher chlorine use

Info-Tool leads to early adoption

• Can rule out early adoption as driving mechanism in Q2

• Can’t rule out frequent adoption in the long run

Info-Tool generates social learning

• Yes, but only complementary to experiential learning

• Complementarity between learning through noticing and social

learning generates persistence

→ Optimal policy: saturate learning-through-noticing intervention

→ May explain extremely high rates of chlorine use in Akram and

Mendelsohn (2021)
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Alternative Explanation: Conversations

Our model: IT generates ↑ αt
ij , j ∈ IT

ŜT
i =

∑T
t=0

∑J
j=1 α

t
ij · atij · stij∑T

t=0

∑J
j=1 a

t
ij

Alternative model: IT generates ↑ atij , j ∈ IT

ŜT
i =

∑T
t=0

∑J
j=1 α

t
ij · atij · stij∑T

t=0

∑J
j=1 a

t
ij
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Alternative Explanation: Conversations

Number of Friends: Discussed Water Purification Number of Friends: Discussed Health

IV OLS OLS IV OLS OLS

Boils, Bleaches, or Chlorinates Water 0.388∗∗∗ 0.213∗∗∗ 0.035 -0.019

(0.107) (0.030) (0.124) (0.034)

Chlorine 0.078∗ 0.011

(0.040) (0.046)

Incentives 0.177∗∗∗ -0.006

(0.040) (0.046)

Info-Tool 0.100∗∗ 0.027

(0.040) (0.046)

Observations 1575 1575 1575 1575 1575 1575

Control Mean 0.245 0.245 0.307 1.018 1.018 1.007

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: Conversations about Health and Water Purification

No differences in frequency of conversations about health/water purification across

treatment groups
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Alternative Explanation: Social Norms

Believes Guest Would Accept Chlorinated Water Number of Friends Believes Uses Chlorine

IV OLS OLS IV OLS OLS

Boils, Bleaches, or Chlorinates Water 0.360∗∗∗ 0.217∗∗∗ 0.157∗∗∗ 0.096∗∗∗

(0.078) (0.021) (0.049) (0.013)

Chlorine 0.081∗∗∗ 0.032∗

(0.029) (0.018)

Incentives 0.145∗∗∗ 0.052∗∗∗

(0.030) (0.018)

Info-Tool 0.102∗∗∗ 0.058∗∗∗

(0.029) (0.018)

Observations 1575 1575 1575 1573 1573 1573

Control Mean 0.657 54.891 0.673 0.043 0.043 0.055

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Social Norms

No differences in expectations of others to chlorinate or accept chlorinated water

across treatment groups
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Health Results

(1) (2) (3) (4) (5)
Index (An-

thropometry)

Height-for-

Age

Weight-for-

Height

Weight-for-

Age

MUAC-for-

Age

Chlorine-Only 0.081∗∗ 0.020 0.009 0.082 0.025

(0.039) (0.084) (0.099) (0.081) (0.064)

Incentives 0.031 0.023 -0.097 0.069 0.062

(0.042) (0.078) (0.101) (0.079) (0.065)

Info-Tool 0.109∗∗∗ -0.001 0.077 0.187∗∗ 0.079

(0.039) (0.080) (0.101) (0.080) (0.066)

Observations 2616 2371 2439 2492 1954

Endline Control Mean -0.019 -1.773 -0.291 -1.407 -1.453

P-values:

Chlorine = Incentives 0.191 0.970 0.307 0.878 0.558

Chlorine = Info-Tool 0.445 0.805 0.501 0.200 0.396

Incentives = Info-Tool 0.044 0.759 0.095 0.142 0.792

Table 3: Child Health: Endline
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Health Results

(1) (2) (3)

Boils Water Uses Chlorine Boils or Chlorinates

Chlorine -0.061∗∗∗ 0.366∗∗∗ 0.294∗∗∗

(0.022) (0.031) (0.033)

Incentives -0.060∗∗∗ 0.360∗∗∗ 0.300∗∗∗

(0.022) (0.031) (0.033)

Info-Tool -0.045∗∗ 0.365∗∗∗ 0.321∗∗∗

(0.022) (0.031) (0.032)

Observations 1575 1575 1575

Control Means

Endline Mean 0.158 0.104 0.255

Baseline Mean 0.144 0.004 0.148

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Endline Water Treatment Method (Self-Reported)
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Health Results

(1) (2) (3) (4) (5)
Index (An-

thropometry)

Height-for-

Age

Weight-for-

Height

Weight-for-

Age

MUAC-for-

Age

Boils, Bleaches, or Chlorinates Water 0.244∗∗ 0.043 -0.008 0.379∗ 0.200

(0.113) (0.208) (0.261) (0.213) (0.185)

Observations 2616 2371 2439 2492 1954

Endline Control Mean -0.019 -1.773 -0.291 -1.407 -1.453

Weak-IV robust F statistic 118.78 126.82 120.83 121.59 94.61

C-statistic p-value 0.025 0.530 0.424 0.130 0.056

Table 5: Child Health: IV

Instrumented: ‘boils, bleaches, or chlorinates water’

Instrument: ‘any treatment group’
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Health Results

Intervention Paper HAZ WHZ WAZ Muac-for-age

Chlorinated Water Akram et al., forthcoming 0.043 -0.008 0.379 0.200

Handwashing Hussam et al., 2022 0.272 – 0.203 0.078

Hygiene Bennett et al., 2018 0.290 – 0.270 –

Nutrient Supplements Sazawal et al., 2013 0.180 – 0.030 –

Soofi et al., 2022 0.290 0.050 0.260 –

ECD Bos et al., 2024 -0.024 0.230 0.137 –

Table 6: Benchmarking Child Health Estimates
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Caregiver Results

Inequity as a potential unintended consequence of...

• ... chlorine distribution, by household bargaining power

− Baseline: 79% involved in HH decision-making about child health

− Baseline: 50% are sole HH decision-maker about child health

− Endline: 11% say do not use chlorine because men do not allow it

• ... Info-tool, by education

− Interpreting Info-Tool may require numeracy/literacy skills

− 30% ever attended school

• ... Info-tool, by social capital

− Social learning only positively impacts people with social capital
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Caregiver Results

Equity Analysis

• Three forms of capital

− Human capital: education, health

− Household capital: decision-making power in the household

− Social capital: number of friends I list, if I am listed in others’

networks, if I am listed as a network-central individual by others

• PCA: 3 social network questions, 4 household decision-making

questions, 1 education question, 1 health question

− Component 1: Loads onto decision-making questions → measure of

household capital

− Component 2: Loads onto health and education → measure of

human capital
− Component 3: Loads onto social network questions → measure of

social capital
• Social network questions collected at endline only – social capital is

possibly an outcome

• Look at engagement with relatives only (unlikely affected by

treatment)
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Caregiver Results

Equitable use in Chlorine and Incentives (pooled)
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Caregiver Results

Not creating inequities by human capital or bargaining power (if anything, progressive)

Inequity in access social learning
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Caregiver Results

Pattern holds when looking at engagement with relatives only

Unlikely that engagement with relatives changes so dramatically from this treatment

Caregiver Outcomes
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Demand

Low take-up with free distribution alone

→ Not only an access problem ...

But access is still the first and foremost issue

Figure 5: Take-it-or-leave-it Demand Exercise
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Conclusion

Learning by doing in health

• Evidence that “practice makes perfect” among providers

• Can we use learning by doing to effectively change health behaviors?

− Yes!

− Limited attention important

− Complementarity between learning by doing and learning from others

• Does learning by doing exacerbate or close inequities?

− Important role of social learning → induces inequity by social capital
− Potentially progressive with regards to human and household capital

• “Seeing is believing” – improved trust among people least likely to

trust experts?

• Limited attention binds differentially by human capital/household

decision-making power?
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Conclusion

Thank You!

gfleischman@g.harvard.edu
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Appendix



Chlorine Use

(1) (2) (3) (4) (5)

Q1 Q2 Q3 Q4 Q5

Chlorine 0.617∗∗∗ 0.551∗∗∗ 0.268∗∗∗ 0.367∗∗∗ 0.222∗∗∗

(0.049) (0.043) (0.036) (0.037) (0.031)

Incentives 0.705∗∗∗ 0.525∗∗∗ 0.343∗∗∗ 0.382∗∗∗ 0.278∗∗∗

(0.048) (0.043) (0.036) (0.037) (0.031)

Info-Tool 0.586∗∗∗ 0.622∗∗∗ 0.337∗∗∗ 0.416∗∗∗ 0.233∗∗∗

(0.049) (0.043) (0.036) (0.037) (0.031)

Observations 1653 1802 1802 1802 1802

P-values:

Incentives = Info-Tool 0.015 0.024 0.864 0.359 0.146

Chlorine = Info-Tool 0.524 0.098 0.056 0.190 0.711

Incentives = Chlorine 0.072 0.552 0.037 0.691 0.068

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Chlorine Use: Aggregate Specification

Back
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Chlorine Use

(1) (2) (3) (4) (5)

Q1 Q2 Q3 Q4 Q5

Chlorine 0.220∗∗∗ 0.149∗∗∗ 0.103∗∗∗ 0.140∗∗∗ 0.086∗∗∗

(0.015) (0.011) (0.012) (0.013) (0.010)

Incentives 0.251∗∗∗ 0.142∗∗∗ 0.129∗∗∗ 0.144∗∗∗ 0.107∗∗∗

(0.015) (0.010) (0.013) (0.012) (0.011)

Info-Tool 0.205∗∗∗ 0.164∗∗∗ 0.126∗∗∗ 0.157∗∗∗ 0.087∗∗∗

(0.013) (0.011) (0.012) (0.012) (0.010)

Observations 4711 6354 4719 4673 4674

P-values:

Incentives = Info-Tool 0.017 0.102 0.813 0.420 0.129

Chlorine = Info-Tool 0.450 0.283 0.126 0.300 0.947

Incentives = Chlorine 0.117 0.610 0.077 0.810 0.133

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Chlorine Use: Panel Specification
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Chlorine Use

(1) (2) (3) (4) (5)

Q1 Q2 Q3 Q4 Q5

Chlorine × Not Improved 0.555∗∗∗ (0.069) 0.482∗∗∗ (0.061) 0.271∗∗∗ (0.051) 0.376∗∗∗ (0.053) 0.224∗∗∗ (0.044)

Chlorine × Improved 0.677∗∗∗ (0.069) 0.616∗∗∗ (0.061) 0.262∗∗∗ (0.051) 0.358∗∗∗ (0.052) 0.216∗∗∗ (0.044)

Incentives × Not Improved 0.677∗∗∗ (0.068) 0.508∗∗∗ (0.060) 0.403∗∗∗ (0.050) 0.364∗∗∗ (0.052) 0.326∗∗∗ (0.043)

Incentives × Improved 0.734∗∗∗ (0.069) 0.544∗∗∗ (0.061) 0.282∗∗∗ (0.051) 0.400∗∗∗ (0.053) 0.228∗∗∗ (0.044)

Info-Tool × Not Improved 0.509∗∗∗ (0.069) 0.559∗∗∗ (0.060) 0.327∗∗∗ (0.050) 0.415∗∗∗ (0.052) 0.245∗∗∗ (0.043)

Info-Tool × Improved 0.662∗∗∗ (0.070) 0.688∗∗∗ (0.062) 0.346∗∗∗ (0.052) 0.416∗∗∗ (0.053) 0.220∗∗∗ (0.044)

Observations 1653 1802 1802 1802 1802

P-values:

Chlorine ×Improved = Chlorine × NotImproved 0.214 0.121 0.910 0.807 0.892

Incentives ×Improved = Incentives × NotImproved 0.559 0.674 0.094 0.626 0.115

Info-Tool ×Improved = Info − Tool × NotImproved 0.119 0.136 0.799 0.986 0.698

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Chlorine Use: Aggregate Specification
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Chlorine Use

(1) (2) (3) (4) (5)

Q1 Q2 Q3 Q4 Q5

Chlorine × Not Improved 0.197∗∗∗ (0.021) 0.132∗∗∗ (0.014) 0.102∗∗∗ (0.016) 0.141∗∗∗ (0.017) 0.085∗∗∗ (0.014)

Chlorine × Improved 0.239∗∗∗ (0.021) 0.164∗∗∗ (0.016) 0.102∗∗∗ (0.017) 0.137∗∗∗ (0.018) 0.086∗∗∗ (0.016)

Incentives × Not Improved 0.235∗∗∗ (0.021) 0.138∗∗∗ (0.013) 0.147∗∗∗ (0.019) 0.132∗∗∗ (0.016) 0.120∗∗∗ (0.017)

Incentives × Improved 0.266∗∗∗ (0.021) 0.146∗∗∗ (0.014) 0.109∗∗∗ (0.017) 0.153∗∗∗ (0.020) 0.092∗∗∗ (0.015)

Info-Tool × Not Improved 0.174∗∗∗ (0.018) 0.152∗∗∗ (0.015) 0.122∗∗∗ (0.017) 0.151∗∗∗ (0.018) 0.088∗∗∗ (0.013)

Info-Tool × Improved 0.237∗∗∗ (0.020) 0.178∗∗∗ (0.016) 0.129∗∗∗ (0.018) 0.158∗∗∗ (0.017) 0.086∗∗∗ (0.014)

Observations 4711 6354 4719 4673 4674

P-values:

Chlorine ×Improved = Chlorine × NotImproved 0.162 0.123 0.995 0.867 0.935

Incentives ×Improved = Incentives × NotImproved 0.303 0.675 0.132 0.414 0.213

Info-Tool ×Improved = Info − Tool × NotImproved 0.020 0.227 0.768 0.790 0.900

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Chlorine Use: Panel Specification
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Chlorine Use

(1) (2) (3) (4) (5)

Q1 Q2 Q3 Q4 Q5

Chlorine × No Spillover 0.604∗∗∗ (0.061) 0.533∗∗∗ (0.054) 0.249∗∗∗ (0.045) 0.352∗∗∗ (0.046) 0.219∗∗∗ (0.039)

Chlorine × Spillover 0.643∗∗∗ (0.084) 0.584∗∗∗ (0.073) 0.302∗∗∗ (0.061) 0.396∗∗∗ (0.063) 0.229∗∗∗ (0.052)

Incentives × No Spillover 0.680∗∗∗ (0.060) 0.498∗∗∗ (0.053) 0.356∗∗∗ (0.045) 0.401∗∗∗ (0.046) 0.292∗∗∗ (0.038)

Incentives × Spillover 0.752∗∗∗ (0.082) 0.574∗∗∗ (0.073) 0.322∗∗∗ (0.061) 0.351∗∗∗ (0.063) 0.256∗∗∗ (0.052)

Info-Tool × No Spillover 0.567∗∗∗ (0.061) 0.558∗∗∗ (0.054) 0.309∗∗∗ (0.045) 0.365∗∗∗ (0.046) 0.202∗∗∗ (0.039)

Info-Tool × Spillover 0.620∗∗∗ (0.083) 0.734∗∗∗ (0.073) 0.386∗∗∗ (0.061) 0.504∗∗∗ (0.063) 0.289∗∗∗ (0.052)

Observations 1653 1802 1802 1802 1802

P-values:

Chlorine ×Spillover = Chlorine × NoSpillover 0.706 0.578 0.489 0.567 0.870

Incentives ×Spillover = Incentives × NoSpillover 0.483 0.402 0.648 0.524 0.577

Info-Tool ×Spillover = Info − Tool × NoSpillover 0.611 0.053 0.313 0.076 0.182

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Chlorine Use: Aggregate Specification
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Chlorine Use

(1) (2) (3) (4) (5)

Q1 Q2 Q3 Q4 Q5

Chlorine × No Spillover 0.212∗∗∗ (0.018) 0.145∗∗∗ (0.013) 0.095∗∗∗ (0.015) 0.134∗∗∗ (0.016) 0.085∗∗∗ (0.013)

Chlorine × Spillover 0.232∗∗∗ (0.025) 0.156∗∗∗ (0.017) 0.118∗∗∗ (0.018) 0.149∗∗∗ (0.019) 0.089∗∗∗ (0.017)

Incentives × No Spillover 0.241∗∗∗ (0.019) 0.134∗∗∗ (0.012) 0.133∗∗∗ (0.016) 0.152∗∗∗ (0.016) 0.114∗∗∗ (0.015)

Incentives × Spillover 0.267∗∗∗ (0.025) 0.157∗∗∗ (0.017) 0.122∗∗∗ (0.020) 0.126∗∗∗ (0.020) 0.095∗∗∗ (0.018)

Info-Tool × No Spillover 0.194∗∗∗ (0.017) 0.146∗∗∗ (0.013) 0.115∗∗∗ (0.015) 0.137∗∗∗ (0.014) 0.075∗∗∗ (0.011)

Info-Tool × Spillover 0.227∗∗∗ (0.023) 0.197∗∗∗ (0.019) 0.145∗∗∗ (0.023) 0.186∗∗∗ (0.024) 0.108∗∗∗ (0.018)

Observations 4711 6354 4719 4673 4674

P-values:

Chlorine ×Spillover = Chlorine × NoSpillover 0.536 0.616 0.328 0.537 0.848

Incentives ×Spillover = Incentives × NoSpillover 0.391 0.284 0.678 0.305 0.424

Info-Tool ×Spillover = Info − Tool × NoSpillover 0.255 0.031 0.263 0.077 0.112

Standard errors in parentheses
∗ p < .1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12: Chlorine Use: Panel Specification
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