Tuskegee and the Health of Black Men

Marcella Alsan Harvard Kennedy School, NBER and BREAD

Motivation-two strands of literature

 (1) The origins of trust (Nunn & Wantchekon, 2011) and its importance for development (Guiso, Zingales and Sapeinza, 2008; Knack and Keefer, 1997).

Motivation-two strands of literature

- (1) The origins of trust (Nunn & Wantchekon, 2011) and its importance for development (Guiso, Zingales and Sapeinza, 2008; Knack and Keefer, 1997).
 - Particularly in relationships with incomplete information (Grief, 1989; Fafchamps, 2006).

Motivation-two strands of literature

- (1) The origins of trust (Nunn & Wantchekon, 2011) and its importance for development (Guiso, Zingales and Sapeinza, 2008; Knack and Keefer, 1997).
 - Particularly in relationships with incomplete information (Grief, 1989; Fafchamps, 2006).
- (2) The "puzzle" of health seeking behavior of the poor (see Dupas, 2011; Chapter 3 of "Poor Economics") and of minority populations (Institute of Medicine, 2003).

This Paper

This paper seeks to tie these two literatures together by providing empirical evidence on the importance of trust for health-seeking behavior in minority populations.

This Paper

- This paper seeks to tie these two literatures together by providing empirical evidence on the importance of trust for health-seeking behavior in minority populations.
- Because we cannot randomize mistrust, we use an historic episode.

This Paper

- This paper seeks to tie these two literatures together by providing empirical evidence on the importance of trust for health-seeking behavior in minority populations.
- Because we cannot randomize mistrust, we use an historic episode.
- The Tuskegee Study is perhaps the most infamous case of medical exploitation in American history, and we use it to identify the effects of mistrust on the health-seeking behaviors and health outcomes of black men.

Outline

- Background on the Tuskegee Study.
- Data and Empirical Specification.
- Results.
- Concluding Remarks.

For 40 years the United States Public Health Service followed ~600 black men in Tuskegee, Alabama, ~400 of whom had syphilis.

source: CDC National Archives

source: Atlanta Constitution, 1972

Men were actively prevented from obtaining medical treatment well after the discovery of Penicillin (mid 1940s).

- Men were actively prevented from obtaining medical treatment well after the discovery of Penicillin (mid 1940s).
 - Offered routine checkups, hot meals, burial payments and told they had "Bad Blood".

- Men were actively prevented from obtaining medical treatment well after the discovery of Penicillin (mid 1940s).
 - Offered routine checkups, hot meals, burial payments and told they had "Bad Blood".
- TSUS lasted from 1932 to 1972.

- Men were actively prevented from obtaining medical treatment well after the discovery of Penicillin (mid 1940s).
 - Offered routine checkups, hot meals, burial payments and told they had "Bad Blood".
- ▶ TSUS lasted from 1932 to 1972.
 - Details of the study leaked to the press in 1972 and became the subject of a multi-article expose by Jean Heller of the AP.

Hypothesis

We hypothesize that TSUS generated mistrust of the medical profession, thereby affecting health seeking behavior and health outcomes particularly for those who most closely identified with the study's subjects in the years following the 1972 disclosure.

Hypothesis

- We hypothesize that TSUS generated mistrust of the medical profession, thereby affecting health seeking behavior and health outcomes particularly for those who most closely identified with the study's subjects in the years following the 1972 disclosure.
- We will test our hypothesis using a quadruple difference framework (detailed description in a few slides).

1. Anecdotally, Tuskegee often associated with deep distrust of the medical profession, particularly among men of the same demographic as TSUS subjects (Corbie-Smith *et al*, 1999).

- 1. Anecdotally, Tuskegee often associated with deep distrust of the medical profession, particularly among men of the same demographic as TSUS subjects (Corbie-Smith *et al*, 1999).
 - "The Tuskegee study became a symbol of their mistreatment by the medical establishment, a metaphor for deceit, conspiracy, malpractice and neglect, if not outright genocide." (Corbie-Smith *et al*, 1999).

- 1. Anecdotally, Tuskegee often associated with deep distrust of the medical profession, particularly among men of the same demographic as TSUS subjects (Corbie-Smith *et al*, 1999).
 - "The Tuskegee study became a symbol of their mistreatment by the medical establishment, a metaphor for deceit, conspiracy, malpractice and neglect, if not outright genocide." (Corbie-Smith *et al*, 1999).
 - "No scientific experiment inflicted more damage on the collective psyche of black Americans than the Tuskegee study," (Jones 1993).

- 1. Anecdotally, Tuskegee often associated with deep distrust of the medical profession, particularly among men of the same demographic as TSUS subjects (Corbie-Smith *et al*, 1999).
 - "The Tuskegee study became a symbol of their mistreatment by the medical establishment, a metaphor for deceit, conspiracy, malpractice and neglect, if not outright genocide." (Corbie-Smith *et al*, 1999).
 - "No scientific experiment inflicted more damage on the collective psyche of black Americans than the Tuskegee study," (Jones 1993).
 - Recent episode of ABC's "Black-ish" begins with a discussion of TSUS and the effect it has on the health-seeking behavior of the protagonist's aging black father.

- 1. Anecdotally, Tuskegee often associated with deep distrust of the medical profession, particularly among men of the same demographic as TSUS subjects (Corbie-Smith *et al*, 1999).
 - "The Tuskegee study became a symbol of their mistreatment by the medical establishment, a metaphor for deceit, conspiracy, malpractice and neglect, if not outright genocide." (Corbie-Smith *et al*, 1999).
 - "No scientific experiment inflicted more damage on the collective psyche of black Americans than the Tuskegee study," (Jones 1993).
 - Recent episode of ABC's "Black-ish" begins with a discussion of TSUS and the effect it has on the health-seeking behavior of the protagonist's aging black father.
 - In the medical literature, dozens of qualitative and quantitative studies of the Tuskegee effect on medical mistrust and low participation in clinical trials.

Motivating Evidence (NYT)

The New York Times

In Rural Alabama, a Longtime Mistrust of Medicine Fuels a Tuberculosis Outbreak

f 🔉 💌 📼 🗛 🗌

Pamphlets were distributed at a community meeting last week in Marion, Ala., that was hosted by the Alabama Department of Public Health to educate residents about the tuberculosis outbreak. Meggan Baber for The New York Tamas

By Alan Blinder

Jan. 17, 2016

MARION, Ala. — When Patricia Church, a 41-year-old warehouse worker, felt sick recently, she suspected that she had a cold. But she also feared something more deadly that has been going around this small, impoverished city: tuberculosis.

"I feel like I had been around someone that had it, and I might die from it if I don't find out whether I got it or not and get it treated," Ms. Church said after she learned last week that she did not have the disease. "I was nervous. I was real nervous."

- 1. Anecdotally, Tuskegee often associated with deep distrust of the medical profession, particularly among men of the same demographic at TSUS subjects (Corbie-Smith *et al*, 1999).
 - "The Tuskegee study became a symbol of their mistreatment by the medical establishment, a metaphor for deceit, conspiracy, malpractice and neglect, if not outright genocide." (Corbie-Smith *et al*, 1999).
 - "No scientific experiment inflicted more damage on the collective psyche of black Americans than the Tuskegee study," (Jones 1993).
 - Recent episode of ABC's "Black-ish" begins with a discussion of TSUS and the effect it has on the health-seeking behavior of the protagonist's aging black father.
 - In the medical literature, dozens of qualitative and quantitative studies of the Tuskegee effect on medical mistrust and low participation in clinical trials/delayed preventive care (again, particularly among African-American men).
- 2. Prior to 1972, black and white male mortality statistics were on a path to convergence, but the mid-1970s witnessed a divergence

DivergenceConvergence

1. Significant decrease in hospitalizations and physician interactions after 1972 for older black men.

A Preview of the Core Results

- 1. Significant decrease in hospitalizations and physician interactions after 1972 for older black men.
- 2. Significant increase in mortality after 1972 for older black men.

A Preview of the Core Results

- 1. Significant decrease in hospitalizations and physician interactions after 1972 for older black men.
- 2. Significant increase in mortality after 1972 for older black men.
- 3. Increased medical mistrust among black men.

A Preview of the Core Results

- 1. Significant decrease in hospitalizations and physician interactions after 1972 for older black men.
- 2. Significant increase in mortality after 1972 for older black men.
- 3. Increased medical mistrust among black men.
- 4. Those with prior experience with the medical community (including women and veterans) are less affected.

Data

HEALTH BEHAVIORS

- National Health Interview Survey (NHIS), annually from 1963, harmonized data on physician interactions and race from 1969-1977
- Utilization measured separately for outpatient and inpatient care.

Data

HEALTH BEHAVIORS

- National Health Interview Survey (NHIS), annually from 1963, harmonized data on physician interactions and race from 1969-1977
- Utilization measured separately for outpatient and inpatient care.

HEALTH OUTCOMES

- In raw form: annual mortality statistics, by county, race, gender, age and cause (1968-1988).
 - We collapse to biennial rates by State Economic Area (SEA) on recommendation from the demography literature
- Generate an all cause age-adjusted older mortality rate for adults 45-74 per 1000 population.
- Generate a chronic cause age-adjusted mortality rate for adults 45-74 per 1000 population using harmonized DRG.

Data

HEALTH BEHAVIORS

- National Health Interview Survey (NHIS), annually from 1963, harmonized data on physician interactions and race from 1969-1977
- Utilization measured separately for outpatient and inpatient care.

HEALTH OUTCOMES

- In raw form: annual mortality statistics, by county, race, gender, age and cause (1968-1988).
 - We collapse to biennial rates by State Economic Area (SEA) on recommendation from the demography literature
- Generate an all cause age-adjusted older mortality rate for adults 45-74 per 1000 population.
- Generate a chronic cause age-adjusted mortality rate for adults 45-74 per 1000 population using harmonized DRG.

MISTRUST

 Opinion survey (GSS) questions on medical mistrust and perceptions taken at odd intervals. Earliest mistrust data from 1998.

To assess the post-1972 treatment effect of being a black male, we estimate

$$Y_{\textit{rat}}^{k} = \alpha + \beta^{k} \left(\mathsf{I}_{\textit{r}}^{\textit{black-male}} \cdot \mathsf{I}_{t}^{\textit{post}} \right) + \gamma^{k} (\mathsf{I}_{t}^{\textit{post}}) + \phi_{\textit{a,black-male}} + \varepsilon_{\textit{rat}},$$

across SEAs grouped into K bins of 150 kilometers distance in our data, using multiple pre-and post-observations for each SEA to identify each β .

To assess the post-1972 treatment effect of being a black male, we estimate

$$Y_{\textit{rat}}^{k} = \alpha + \beta^{k} \left(\mathsf{I}_{\textit{r}}^{\textit{black-male}} \cdot \mathsf{I}_{t}^{\textit{post}} \right) + \gamma^{k} (\mathsf{I}_{t}^{\textit{post}}) + \phi_{\textit{a,black-male}} + \varepsilon_{\textit{rat}},$$

across SEAs grouped into K bins of 150 kilometers distance in our data, using multiple pre-and post-observations for each SEA to identify each β .

Comparing black males to white males

To assess the post-1972 treatment effect of being a black male, we estimate

$$Y_{\textit{rat}}^{\textit{k}} = \alpha + \beta^{\textit{k}} \left(\mathsf{I}_{\textit{r}}^{\textit{black-male}} \cdot \mathsf{I}_{t}^{\textit{post}} \right) + \gamma^{\textit{k}} (\mathsf{I}_{t}^{\textit{post}}) + \phi_{\textit{a,black-male}} + \varepsilon_{\textit{rat}},$$

across SEAs grouped into K bins of 150 kilometers distance in our data, using multiple pre-and post-observations for each SEA to identify each β .

- Comparing black males to white males
- Comparing black males to black females

To assess the post-1972 treatment effect of being a black male, we estimate

$$Y_{\textit{rat}}^{\textit{k}} = \alpha + \beta^{\textit{k}} \left(\mathsf{I}_{\textit{r}}^{\textit{black-male}} \cdot \mathsf{I}_{t}^{\textit{post}} \right) + \gamma^{\textit{k}} (\mathsf{I}_{t}^{\textit{post}}) + \phi_{\textit{a,black-male}} + \varepsilon_{\textit{rat}},$$

across SEAs grouped into K bins of 150 kilometers distance in our data, using multiple pre-and post-observations for each SEA to identify each β .

- Comparing black males to white males
- Comparing black males to black females
- (We cannot report this for utilization data.)

A Stark Geographic Gradient Emerges. . .

Panel B. β - All Black Sample Average DD Coefficient: 0.091 95% CI: [0.065, 0.118]

. . . That Does Not Appear for White Men, Moves the Other Way for Black Women. . .

. . . And Is Not Apparent Prior to 1972.

Panel F: β - All Black Sample with False Post DD Coefficient: 0.014 95% CI: [-0.036,0.063]

All Amid an Era of Convergence

These geographic gradients emerge in a context thought to be conducive to racial mortality convergence that should have, if anything, favored the Deep South.

All Amid an Era of Convergence

- These geographic gradients emerge in a context thought to be conducive to racial mortality convergence that should have, if anything, favored the Deep South.
 - Desegregation of Hospitals- Almond, Chay and Greenstone (2006), Zheng and Zhou (2008).

All Amid an Era of Convergence

- These geographic gradients emerge in a context thought to be conducive to racial mortality convergence that should have, if anything, favored the Deep South.
 - Desegregation of Hospitals- Almond, Chay and Greenstone (2006), Zheng and Zhou (2008).
 - Voting Rights Act- Cascio and Washington (QJE, 2014).

Empirical Strategy

- The DD results inform our estimation strategy, which seeks to capture the impact of Tuskegee, using a pooled Difference-in-Difference-in-Differences (DDD) design.
- Comparing behavior/outcomes before and after 1972, by demographic proximity to study subjects (black, male).
- lnteracted with a measure of **proximity** (P_s)
 - Geographic proximity (in 000 km)
 - Migration rates from Alabama for black residents
 Connectedness

Estimate, for individual *i* of gender *g* and race *r*, measured in locale *s* at time *t*:

$$Y_{igrst} = \alpha + \beta_1 (P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_r^{black} \cdot \mathsf{I}_g^{male}) + \beta_2 (P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_g^{male}) + \beta_3 \left(P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_r^{black} \right) + \mathsf{X}'_{it} \Phi + \theta_{rgt} + \phi_{rgs} + \tau_{st} + \varepsilon_{igrst}.$$

Estimate, for individual *i* of gender *g* and race *r*, measured in locale *s* at time *t*:

$$Y_{igrst} = \alpha + \beta_1 (P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_r^{black} \cdot \mathsf{I}_g^{male}) + \beta_2 (P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_g^{male}) + \beta_3 \left(P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_r^{black} \right) + \mathsf{X}'_{it} \Phi + \theta_{rgt} + \phi_{rgs} + \tau_{st} + \varepsilon_{igrst}.$$

β coefficients measure the "treatment effect" of being in a particular demo group relative to another, after 1972, as a function of geographic proximity to Macon County, Alabama (or other proximity measure).

Estimate, for individual *i* of gender *g* and race *r*, measured in locale *s* at time *t*:

$$Y_{igrst} = \alpha + \beta_1 (P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_r^{black} \cdot \mathsf{I}_g^{male}) + \beta_2 (P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_g^{male}) + \beta_3 \left(P_s \cdot \mathsf{I}_t^{post} \cdot \mathsf{I}_r^{black} \right) + \mathsf{X}'_{it} \Phi + \theta_{rgt} + \phi_{rgs} + \tau_{st} + \varepsilon_{igrst}.$$

- β coefficients measure the "treatment effect" of being in a particular demo group relative to another, after 1972, as a function of geographic proximity to Macon County, Alabama (or other proximity measure).
- Controlling for the effects of being in each demo group in each year (θ_{grt}), being in close geographic proximity in each year (τ_{st}), and of being in a particular demo group in close proximity (φ_{srg}).

Estimate, for individual *i* of gender g and race r, measured in locale s at time t:

$$Y_{igrst} = \alpha + \beta_1 (P_s \cdot |_t^{post} \cdot |_r^{plack} \cdot |_g^{male}) + \beta_2 (P_s \cdot |_t^{post} \cdot |_g^{male}) + \beta_3 \left(P_s \cdot |_t^{post} \cdot |_r^{plack} \right) + X'_{it} \Phi + \theta_{rgt} + \phi_{rgs} + \tau_{st} + \varepsilon_{igrst}.$$

- β coefficients measure the "treatment effect" of being in a particular demo group relative to another, after 1972, as a function of geographic proximity to Macon County, Alabama (or other proximity measure).
- Controlling for the effects of being in each demo group in each year (θ_{grt}), being in close geographic proximity in each year (τ_{st}), and of being in a particular demo group in close proximity (φ_{srg}).

Mortality regressions similar, but individual-level covariates replaced with SEA-level.

Identification

Identification

Estimates of β_1 are **unbiased** if the post-1972 geographic gradient in the racial gap across genders for healthcare utilization and outcomes **would have mimicked the pre-1972 geographic gradients** in the absence of the study's disclosure

Identification

Identification

Estimates of β_1 are **unbiased** if the post-1972 geographic gradient in the racial gap across genders for healthcare utilization and outcomes **would have mimicked the pre-1972 geographic gradients** in the absence of the study's disclosure

Estimates of β_1 are plausibly attributable to Tuskegee if there are no other systematic shocks to black men, in particular, that affect utilization and mortality after 1972 that are correlated with proximity to Macon County but not due to the timing of the study's disclosure. Such shocks cannot affect (married) black women or white men.

Outcomes

Utilization Outcomes:

Probability of physician visit in the past 12 months Number of outpatient physician interactions (different question) Probability of hospital admission in the past 12 months Number of hospital admissions (different question)

Mortality Outcomes:

Log age-adjusted mortality Log chronic-cause age-adjusted mortality

Event Study Specification

$$Y_{irgst} = \alpha + \sum_{n \neq 1972} \beta_1^n (P_s \cdot I_{t=n} \cdot I_r^{black} \cdot I_g^{male}) + \sum_{n \neq 1972} \beta_2^n (P_s \cdot I_{t=n} \cdot I_g^{male}) + \sum_{n \neq 1972} \beta_3^n (P_s \cdot I_{t=n} \cdot I_r^{black}) + X'_i \Phi + \theta_{rgt} + \phi_{srg} + \tau_{st} + \varepsilon_{igrst},$$

Event Studies

Utilization

Event Studies

Chronic Disease Mortality Rates

Results — Healthcare Utilization

	Dependent variable:							
	Number outpatient visits (1)	Any outpatient visit (2)	Any hospital admission (3)	Number nights in hospital (4)	Log age-adjusted all-cause mortality (5)	Level age-adjusted all-cause mortality (6)	Log age-adjusted chronic mortality (7)	Level age-adjusted chronic mortality (8)
Mean of dep var for black		Panel A: U	Jtilization			Panel B:	Mortality	
men before 1973	4.10	0.62	0.14	2.26	3.42	30.68	3.14	23.37
$P_j^*post_t \ ^*black_r^*male_g$	-1.328^{***} (0.354)	-0.037^{***} (0.007)	-0.015 (0.013)	0.738** (0.363)		2.142^{**} (0.851)		1.566^{**} (0.770)
$P_j^* post_t^* male_g$	-0.022 (0.080)	0.004 (0.005)	(0.004)	0.067 (0.075)	0.005* (0.003)		0.008*** (0.003)	
$P_j^*post_t^*black_r$		0.011* (0.006)	0.006 (0.004)	0.123 (0.104)			-0.018 (0.020)	
Fixed effects	State-year, race-gender-year, race-gender-state				SEA-	year, race-gender	-year, race-gende	r-SEA
Observations No. clusters Adj. <i>R</i> -squared	220,954 49 0.017	$220,954 \\ 49 \\ 0.025$	220,954 49 0.010	220,954 49 0.010	17,737 465 0.812	$18,600 \\ 465 \\ 0.303$	$17,611 \\ 465 \\ 0.804$	$18,600 \\ 465 \\ 0.226$

TABLE I BASELINE ESTIMATES UTILIZATION AND MORTALITY

Results — Mortality

	Dependent variable:								
	Number outpatient visits (1)	Any outpatient visit (2)	Any hospital admission (3)	Number nights in hospital (4)	Log age-adjusted all-cause mortality (5)	Level age-adjusted all-cause mortality (6)	Log age-adjusted chronic mortality (7)	Level age-adjusted chronic mortality (8)	
Mean of dep var for black		Panel A: U			Panel B: Mortality				
men before 1973	4.10	0.62	0.14	2.26	3.42	30.68	3.14	23.37	
$P_{j}^{*}post_{t}^{*}black_{r}^{*}male_{g}$	-1.328***	-0.037***	-0.015	0.738**	0.071***	2.142**	0.087***	1.566**	
	(0.354)				(0.023)	(0.851)	(0.022)	(0.770)	
$P_i^* post_t^* male_g$		0.004	0.004	0.067	0.005*	-0.045	0.008***	-0.031	
			(0.004)						
$P_i^* post_t^* black_r$			0.006				-0.018		
		(0.006)	(0.004)	(0.104)					
Fixed effects	State-year, race-gender-year, race-gender-state				SEA-	year, race-gender	-year, race-gende	r-SEA	
Observations	220,954	220,954	220,954	220,954	17,737	18,600	17,611	18,600	
No. clusters	49	49	49	49	465	465	465	465	
Adj. R-squared					0.812	0.303	0.804	0.226	

TABLE I BASELINE ESTIMATES UTILIZATION AND MORTALITY

Results — Placebo Coefficients

	Dependent variable:								
Mean of den var for black	Number outpatient visits (1)	Any outpatient visit (2) Panel A: U	Any hospital admission (3) Jtilization	Number nights in hospital (4)	Log age-adjusted all-cause mortality (5)	Level age-adjusted all-cause mortality (6) Panel B:	Log age-adjusted chronic mortality (7) Mortality	Level age-adjusted chronic mortality (8)	
men before 1973	4.10	0.62	0.14	2.26	3.42	30.68	3.14	23.37	
$P_j^* post_t * black_r^* male_g$	-1.328***	-0.037***	-0.015	0.738**	0.071***	2.142**	0.087***	1.566**	
$P_j^* post_t^* male_g$	(0.354) -0.022 (0.080)	(0.007) 0.004 (0.005)	(0.013) 0.004 (0.004)	(0.363) 0.067 (0.075)	(0.023) 0.005* (0.003)	(0.851) -0.045 (0.047)	(0.022) 0.008*** (0.003)	(0.770) -0.031 (0.040)	
$P_j^* post_t^* black_r$	(0.052) (0.110)	0.011* (0.006)	0.006 (0.004)	0.123 (0.104)	-0.017 (0.019)	-0.765 (0.658)	-0.018 (0.020)	-0.682 (0.663)	
Fixed effects	State-year, race-gender-year, race-gender-state				SEA-	year, race-gender	-year, race-gende	r-SEA	
Observations No. clusters Adj. <i>R</i> -squared	220,954 49 0.017	220,954 49 0.025	220,954 49 0.010	220,954 49 0.010	17,737 465 0.812	$18,600 \\ 465 \\ 0.303$	$17,611 \\ 465 \\ 0.804$	$18,600 \\ 465 \\ 0.226$	

TABLE I BASELINE ESTIMATES UTILIZATION AND MORTALITY

Again, our results are plausibly attributable to Tuskegee only if there are no other systematic shocks to black men that affect utilization and mortality after 1972 that are correlated with proximity to Macon County but not due to the timing of the study's disclosure.

Again, our results are plausibly attributable to Tuskegee only if there are no other systematic shocks to black men that affect utilization and mortality after 1972 that are correlated with proximity to Macon County but not due to the timing of the study's disclosure.

Such a shock would need to affect mortality and utilization along a linear geographic gradient from Macon County, Alabama (rules out state-specific policies)

Again, our results are plausibly attributable to Tuskegee only if there are no other systematic shocks to black men that affect utilization and mortality after 1972 that are correlated with proximity to Macon County but not due to the timing of the study's disclosure.

- Such a shock would need to affect mortality and utilization along a linear geographic gradient from Macon County, Alabama (rules out state-specific policies)
- Such a shock must be centered at Macon County, Alabama (rules out general Southern effects)

Again, our results are plausibly attributable to Tuskegee only if there are no other systematic shocks to black men that affect utilization and mortality after 1972 that are correlated with proximity to Macon County but not due to the timing of the study's disclosure.

- Such a shock would need to affect mortality and utilization along a linear geographic gradient from Macon County, Alabama (rules out state-specific policies)
- Such a shock must be centered at Macon County, Alabama (rules out general Southern effects)

Permutation test

Panel B. Log Age-Adjusted Chronic Mortality

Permutation test

Panel B. Log Age-Adjusted Chronic Mortality

▶ $|\beta_1|$ Macon > 96% of other States \triangleright $|\beta_1|$ Macon > 98% of other SEAs

Our results are robust to:

- 1. A South-only sample
- 2. Alternative measures of proximity
- 3. Alternative empirical specifications (county rather than SEA-level, annual data, balanced panel, no weights, fully parametric specification, etc.)

Our results are robust to:

- 1. A South-only sample
- 2. Alternative measures of proximity
- 3. Alternative empirical specifications (county rather than SEA-level, annual data, balanced panel, no weights, fully parametric specification, etc.)

The following placebo tests hold:

- 1. No effect on children
- 2. No effect on dental visits

Alternative Proximity Measures

		Dependent variable:								
	Nu	Number of outpatient visits				Log age-adjusted chronic mortality				
	Migrant treatment	grant tment (1) South only (2) (3) Panel A: Utilization		Kids (placebo)	Migrant treatment	South only (6) (7) Panel B: Mortality		Kids (placebo)		
	(1)			(4)	(5)			(8)		
$P_j^* post_t \ ^* black_r^* male_g$			-1.794^{*}	-0.152			0.066**	0.171		
$P_j^* post_t^* male_g$			(1.027) 0.417	(0.151) 0.016				(0.548) -0.019*		
$P_j^* post_t^* black_r$			(0.423) 0.794^{*} (0.434)	(0.030) 0.148 (0.112)						
$Migrant_j^*post_t^*black_r^*male_g$	-10.18***	-8.356**			0.220***	0.140**				
$Migrant_j^* post_t^* male_g$	0.838	0.099			0.012					
$Migrant_j^* post_t^* black_r$	(1.306) 2.775 (1.755)	(1.715) 3.071 (1.981)			(0.018) -0.090 (0.069)	(0.023) -0.092^{*} (0.048)				
Fixed effects	State-year, race-gender-year, race-gender-state				SEA-year, race-gender-year, race-gen			gender-SEA		
Observations No. clusters Adj. <i>R</i> -squared	216,984 48 0.017	65,495 16 0.016	$69,465 \\ 17 \\ 0.016$	299,688 49 0.044	$17,103 \\ 451 \\ 0.799$	6,973 175 0.920	7,413 186 0.923	$18,600 \\ 465 \\ -0.027$		

TABLE III Alternative Measures of Proximity, Robustness Checks

Outcomes Within the South

Dependent variable: Number of outpatient visits Log age-adjusted chronic mortality South only South only (2)(3)(6) (7)Panel A: Utilization Panel B: Mortality $P_i^* post_t * black_r^* male_{\sigma}$ -1.794^{*} 0.066** (1.027)(0.033)0.417 0.003 $P_i^* post_i^* male_a$ (0.423)(0.012)P:*post/*black. 0.794^{*} -0.040(0.434)(0.027)Migrant;*post;*black,*male, -8.356** 0.140** (3.351)(0.069)Migrant;*post;*male_g 0.099 0.015 (1.715)(0.023)Migrant;*post;*black, 3.071-0.092* (1.981)(0.048)Fixed effects State-year, race-gender-year, SEA-year, race-gender-year, race-gender-SEA race-gender-state Observations 65.495 69.465 6.973 7.413 No. clusters 16 17 175 186 Adj. R-squared 0.016 0.016 0.920 0.923

TABLE III Alternative Measures of Proximity, Robustness Checks

More (but not all) Robustness Checks

	(1)	(2)	(3)	(4)	(5)	(6)
	Include SF and LA	Weighting	Parametric- Incarcerated & Unemployed	Weighting	County-Level	Parametric- Incarcerated & Unemployed
Migrant _j *post _t *black _r *maleg	0.233*** (0.071)	0.200*** (0.071)	0.165** (0.075)			
Migrant _j *post _t *male _g	0.016 (0.017)	0.013 (0.019)	0.003 (0.021)			
Migrant _j *post _t *black _r	-0.133** (0.067)	0.016 (0.017)	-0.094 (0.072)			
$P_j * post_t * black_r * male_g$				0.082*** (0.016)	0.048*** (0.019)	0.062*** (0.022)
P _j *post _t *male _g				0.007** (0.003)	0.013** (0.005)	0.008** (0.003)
$P_j * post_t * black_r$				-0.033** (0.014)	-0.024 (0.015)	-0.028 (0.023)
Fixed Effects	SI	EA-Year, Race	-Gender-Year, Rac	e-Gender-SEA (unless parametrie	c)
Observations	17,261	17,103	17,071	17,611	94,344	17,580
No. Clusters Adi R-squared	453 0.796	451 0.866	449 0.719	465	3,070 0.715	463 0.725

Appendix Table A.5: Additional Robustness Checks - Mortality

- 1. Heterogeneous effects by income, education and distribution of black medical doctors.
- 2. Comparisons between veterans and non-veterans.
- 3. Survey data on medical mistrust.

TABLE II

HETEROGENEOUS EFFECTS, UTILIZATION

Dependent variable: number outpatient visits

	By income level		By educational status		By prevalence black doctors		By marital status		
	income > black male median (1)	income \leq black male median (2)	educ > black male median (3)	$educ \leq black$ male median (4)	black MD > median (5)	black MD ≤ median (6)	married (7)	unmarried (8)	
$P_{j}^{*}post_{t}^{*}black_{r}^{*}male_{g}$	-0.546 (0.548)	-1.725^{**} (0.705)	-0.061 (0.409)	-2.801^{***} (0.839)	-1.359^{***} (0.373)	-2.052 (1.460)	-1.398^{***} (0.326)	-1.665 (1.061)	
$P_j^* post_t^* male_g$	0.060 (0.084)	-0.049 (0.184)	-0.013 (0.092)	-0.130 (0.294)	0.042 (0.082)	-0.110 (0.238)	0.029 (0.106)	-0.188 (0.240)	
$P_j^* post_t^* black_r$	-0.150 (0.221)	-0.211^{*} (0.108)	-0.465^{**} (0.215)	0.468 (0.617)	-0.019 (0.115)	-0.566 (0.726)	0.419** (0.204)	-0.511^{**} (0.191)	
Fixed effects	State-year, race-gender-year, race-gender-state								
Observations No. clusters Adj. <i>R</i> -squared	$143,554 \\ 49 \\ 0.013$	77,400 49 0.030	178,756 49 0.014	42,198 49 0.036	$176,032 \\ 25 \\ 0.016$	$44,922 \\ 24 \\ 0.017$	$160,335 \\ 49 \\ 0.014$	60,619 49 0.030	

Education

TABLE II

HETEROGENEOUS EFFECTS, UTILIZATION

Dependent variable: number outpatient visits By educational status $educ > black \quad educ \leq black$ male median male median (3)(4) $P_i^* post_t^* black_r^* male_g$ -0.061 -2.801^{***} (0.409)(0.839)-0.013-0.130

Prevalence of Black Doctors

TABLE II

HETEROGENEOUS EFFECTS, UTILIZATION

		Dependent v	ariable: numbe	r outpatient vis	sits			
	By income level		By educat	ional status	By preval doc	ence black tors	By marital status	
	income > black male median (1)	income ≤ black male median (2)	educ > black male median (3)	$educ \leq black$ male median (4)	black MD > median (5)	black MD $\leq \text{median}$ (6)	married (7)	unmarried (8)
$P_j^* post_t^* black_r^* male_g$	-0.546 (0.548)	-1.725^{**} (0.705)	-0.061 (0.409)	-2.801^{***} (0.839)	-1.359^{***} (0.373)	-2.052 (1.460)	-1.398^{***} (0.326)	-1.665 (1.061)
$P_j^* post_t^* male_g$	0.060 (0.084)	-0.049 (0.184)	-0.013 (0.092)	-0.130 (0.294)	0.042 (0.082)	-0.110 (0.238)	0.029 (0.106)	-0.188 (0.240)
$P_j^* post_t^* black_r$	-0.150 (0.221)	-0.211^{*} (0.108)	-0.465^{**} (0.215)	0.468 (0.617)	-0.019 (0.115)	-0.566 (0.726)	0.419** (0.204)	-0.511^{**} (0.191)
Fixed effects		S	tate-year, race-	gender-year, ra	ce-gender-st	ate		
Observations No. clusters Adj. <i>R</i> -squared	$143,554 \\ 49 \\ 0.013$	77,400 49 0.030	$178,756 \\ 49 \\ 0.014$	42,198 49 0.036	176,032 25 0.016	44,922 24 0.017	$160,335 \\ 49 \\ 0.014$	60,619 49 0.030

Evidence on Mechanism: Experience (Veterans)

ALL MALE SAMPLE, VETERANS VERSUS NONVETERANS								
Outcome	Number outpatient visits (1)	Any outpatient visit (2)	Any hospital admission (3)	Number nights in hospital (4)				
$\overline{P_{j}^{*}post_{t}^{*}black_{r}^{*}nonvet_{g}}$	-1.161^{***}	-0.040***	-0.027^{***}	-0.417				
	(0.347)	(0.009)	(0.007)	(0.312)				
$P_{j}^{*}post_{t}^{*}nonvet_{g}$	0.146^{**}	0.004	0.002	0.051				
5	(0.072)	(0.005)	(0.003)	(0.056)				
$P_i^* post_t^* black_r$	-0.592^{***}	-0.024^{**}	-0.012	0.280				
	(0.179)	(0.011)	(0.010)	(0.247)				
Fixed effects	State-year, ra	ace-nonveterai	n-year, race-nony	veteran-state				
Observations	135,635	135,635	135,635	135,635				
No. clusters	49	49	49	49				
R-squared	0.020	0.023	0.016	0.014				

TABLE V All Male Sample, Veterans versus Nonveterans

Evidence on Mechanism: Medical Mistrust in 1998

"I trust doctors judgment about my medical care."
- "I trust doctors judgment about my medical care."
- "I worry I will be denied the treatment or services I need."

- "I trust doctors judgment about my medical care."
- "I worry I will be denied the treatment or services I need."
- "People can be trusted."

- "I trust doctors judgment about my medical care."
- "I worry I will be denied the treatment or services I need."
- "People can be trusted."

$$\begin{aligned} \textit{Mistrust}_{irgs} &= \alpha + \beta_1 (P_s \cdot \mathsf{l}_r^{\textit{black}} \cdot \mathsf{l}_g^{\textit{male}}) + \beta_2 (P_s \cdot \mathsf{l}_r^{\textit{black}}) + \beta_3 (P_s \cdot \mathsf{l}_g^{\textit{male}}) \\ &+ \tau_s + \theta_{rg} + \mathsf{X}'_i \mathsf{A} + \epsilon_{irgs} \end{aligned}$$

- "I trust doctors judgment about my medical care."
- "I worry I will be denied the treatment or services I need."
- "People can be trusted."

$$\begin{aligned} \textit{Mistrust}_{irgs} &= \alpha + \beta_1(P_s \cdot \mathsf{l}_r^{\textit{black}} \cdot \mathsf{l}_g^{\textit{male}}) + \beta_2(P_s \cdot \mathsf{l}_r^{\textit{black}}) + \beta_3(P_s \cdot \mathsf{l}_g^{\textit{male}}) \\ &+ \tau_s + \theta_{rg} + \mathsf{X}_i' \mathsf{A} + \epsilon_{irgs} \end{aligned}$$

Mistrust Results

TABLE IV

EFFECT OF TUSKEGEE ON BELIEFS ABOUT MEDICAL CARE

Outcome	Medical mistrust (1)	Deny treatment (2)	General mistrust (3)			
$P_j^*black_r^*male_g$	0.176**	0.157	-0.073			
	(0.071)	(0.127)	(0.197)			
$P_{j}^{*}male_{g}$	-0.016	-0.002	-0.005			
	(0.030)	(0.039)	(0.048)			
$P_{j}^{*}black_{r}$	-0.051	-0.024	-0.052			
0	(0.047)	(0.115)	(0.055)			
Fixed effects	$State_{1998}, race^*gender$					
Observations	801	801	801			
Adj. <i>R</i> -squared	0.024	0.054	0.103			
No. clusters	36	36	36			

Mistrust Results

TABLE IV

EFFECT OF TUSKEGEE ON BELIEFS ABOUT MEDICAL CARE

Outcome	Medical mistrust (1)	Deny treatment (2)	General mistrust (3)			
$P_j^*black_r^*male_g$	0.176**	0.157	-0.073			
	(0.071)	(0.127)	(0.197)			
$P_j^*male_g$	-0.016	-0.002	-0.005			
	(0.030)	(0.039)	(0.048)			
$P_i^* black_r$	-0.051	-0.024	-0.052			
0	(0.047)	(0.115)	(0.055)			
Fixed effects	${ m State}_{1998}, { m race}^{*}{ m gender}$					
Observations	801	801	801			
Adj. <i>R</i> -squared	0.024	0.054	0.103			
No. clusters	36	36	36			

Is it puzzling that black women are unaffected by the news of Tuskegee?

- Demographics of the Tuskegee victims.
- ▶ Differences in *how* women form trust.
- Differences in prior experience with the medical profession.

Results-Women's Utilization, by Marital Status

TABLE II

HETEROGENEOUS EFFECTS, UTILIZATION

Dependent variable: number outpatient visits											
	By income level		By educational status		By prevalence black doctors		By marital status				
	income > black male median (1)	income ≤ black male median (2)	educ > black male median (3)	$\begin{array}{l} \text{educ} \leq \text{black} \\ \text{male median} \\ (4) \end{array}$	black MD > median (5)	black MD ≤ median (6)	married (7)	unmarried (8)			
$P_j^* post_t^* black_r^* male_g$	-0.546 (0.548)	-1.725^{**} (0.705)	-0.061 (0.409)	-2.801^{***} (0.839)	-1.359^{***} (0.373)	-2.052 (1.460)	-1.398^{***} (0.326)	-1.665 (1.061)			
$P_j^* post_t^* male_g$	0.060 (0.084)	-0.049 (0.184)	-0.013 (0.092)	-0.130 (0.294)	0.042 (0.082)	-0.110 (0.238)	0.029 (0.106)	-0.188 (0.240)			
$P_j^* post_t^* black_r$	-0.150 (0.221)	-0.211^{*} (0.108)	-0.465^{**} (0.215)	0.468 (0.617)	-0.019 (0.115)	-0.566 (0.726)	0.419** (0.204)	-0.511^{**} (0.191)			
Fixed effects	State-year, race-gender-year, race-gender-state										
Observations No. clusters Adj. <i>R</i> -squared	$143,554 \\ 49 \\ 0.013$	77,400 49 0.030	178,756 49 0.014	42,198 49 0.036	$176,032 \\ 25 \\ 0.016$	$44,922 \\ 24 \\ 0.017$	$160,335 \\ 49 \\ 0.014$	$60,619 \\ 49 \\ 0.030$			

Concluding Remarks

We have presented evidence that Tuskegee affected beliefs, behaviors and outcomes among African American men in the years following 1972.

Concluding Remarks

- We have presented evidence that Tuskegee affected beliefs, behaviors and outcomes among African American men in the years following 1972.
- Back of the envelope calculation suggests can account for approximately one year lost life expectancy, on average, among older black men conditional on reaching age 50.
 - This is somewhat smaller than the life expectancy penalty from migrating North in the Great Migration (Black et al, 2015)

Concluding Remarks

- We have presented evidence that Tuskegee affected beliefs, behaviors and outcomes among African American men in the years following 1972.
- Back of the envelope calculation suggests can account for approximately one year lost life expectancy, on average, among older black men conditional on reaching age 50.
 - This is somewhat smaller than the life expectancy penalty from migrating North in the Great Migration (Black et al, 2015)
- Thank you!

Age-Specific Mortality Rates

▶ preview

Age-Specific Mortality Rates

▶ preview

Maps of Treatment Intensity

• Empirical Strategy

Panel A. Distance to Tuskegee

Additional Event Studies

Event Study Mortality

Panel A. Extended Period (1962-1987)

Panel B. Extended Period (1962-1987) (β_1 Coefficient: limited & weighted)

Panel C. Main Sample (1968-1987) (β_1 Coefficient)

Heat Map

• Empirical Distribution I

